摘要:文章针对政府大数据治理的现状、能力和发展路径不清晰等问题, 提出评估和优化政府数据治理计划和策略的成熟度测评指标体系。通过对成熟度概念、信息治理、数据治理和大数据治理等核心概念界定, 对政府大数据治理的成熟度研究现状及成果进行归纳, 总结形成大数据治理的成熟度要素, 结合《关于促进大数据发展行动纲要》的实践需求, 构建出政府大数据治理成熟度评测指标体系, 提出政府大数据成熟度评测模型, 可以作为当前政府大数据发展自我测评和改进的工具, 同时还可以作为不同地区之间政府大数据治理能力的比较基准。

  成熟度模型作为一个解释型或标准化的概念, 被广泛应用于计算机领域、管理领域、医疗领域等多种不同领域。其中软件领域各类成熟度模型如Nolan成长阶段模型, CMMI能力成熟度模型, SPICE软件过程改进和能力提升模型, 管理领域如企业管理成熟度模型、项目管理成熟度模型、质量管理成熟度模型、知识管理成熟度模型、数据管理成熟度模型, 医疗领域如医疗信息成熟度模型、医疗连续性成熟度模型。随着大数据时代数据驱动理念席卷全球, 推动人们思维价值观念、经济生活方式乃至国家信息治理模式的巨大变革, 大数据领域成熟度的研究初现端倪。

  本文通过对相关代表性文献的内容分析, 系统梳理了成熟度模型和大数据治理的相关概念, 对大数据成熟度及模型构建的研究成果进行了归纳, 在此基础上结合《关于促进大数据发展行动纲要》的实践需求, 提出了一套政府大数据治理成熟度评测指标体系。

  一、成熟度模型概念界定

  成熟度通常指特定能力从最初到期望达到目标的过程中的演化进度。成熟度模型是一种对关注领域进行评估的工具和持续改进的方法, 用于把成熟度要素分成若干不同阶段, 评估领域现状和所处发展阶段。目前成熟度模型主要分为组织、技术、文化三类视角, 现将不同领域视角下的成熟度模型定义、描述与应用进行简单梳理, 如表1所示。

表1 成熟度模型概念描述及应用

  成熟度要素可以是人、物或者社会系统, 其关注领域可以是过程、数字资源、人的能力等成熟程度。成熟度模型基本构成要素通常包括等级、等级符号、等级特性描述、维度、维度元素或活动、等级各元素或活动描述。模型通常定义3~6个等级, 且每个等级的多个维度具有共同属性。

  二、信息治理、数据治理、大数据治理涵义辨析

  (一)信息治理涵义

  信息治理是信息资源管理计划的重要组成部分, 也是信息资源管理项目成功实施的关键因素。英国国民健康服务组织基于信息生命周期管理视角, 经济学人智库基于信息经济视角, Gartner基于组织战略视角, 一些学者基于信息技术、信息活动、过程协同视角等均对信息治理进行过描述, 提出相应治理途径, 如HORUS信息治理模型, 企业级战略框架和执行机制, 责任框架, 最终成果体现为政策、原则、标准、流程等顶层设计项目。有学者认为, 信息治理的学科领域涵盖组织、元数据管理、安全和隐私、数据质量、业务流程集成、主数据集成和信息生命周期管理, 其中不少学者对数据质量、数据管理和数据安全与隐私论述较多, 且在数据治理和大数据治理中依然适用。

  (二)数据治理涵义

  数据治理和信息治理是两个较为相近的概念, 甚至有时学者互换使用。实际上信息和数据这两个核心关键词决定其概念差别, 信息治理是基于信息化问题研究视角更为广义的定义, 数据治理重点采集不同来源的实际数据元素进行研究。DGI、TWDI、MD、IBM等各类数据研究机构和企业基于企业数据资产、信息权、数据管理等视角均对数据治理进行过定义, 也有学者基于IT治理、数据资产管理、数据质量管理、组织战略等视角对数据治理进行过阐述。治理主体通常是数据治理委员会或其他组织机构, 数据治理的客体是组织信息、组织数据和信息权, 数据治理采取指定模型、业务技术、组织要求、协同方法、最佳实践等手段, 其成果形式体现为决策过程、职责描述、组织政策、质量控制原则等具体执行层项目成果。

  (三)大数据治理涵义

  对于大数据治理, 使用最广泛的是桑尼尔·索雷斯的定义。他认为, 大数据治理是广义信息治理计划的一部分, 通过调整多种功能目标, 制定与大数据有关的数据优化、隐私保护与数据变现的政策。大数据治理的领域基础主要来源于传统信息治理学科领域, 信息治理的学科、工具、平台依然可以应用于大数据治理, 但数据多样性导致多类型数据管理工具和平台的多样性。国外大数据治理研究层面呈现出以下特点:多元化的治理原则和法律规范, 多维度的治理框架、方法和活动, 多行业的治理功能应用。国内大数据治理研究处于起步阶段, 多为表示方法、信息融合、高效低成本存储、结构化和半结构化数据分析技术等技术视角。无论是信息治理、数据治理还是大数据治理, 企业和数据机构实践相对较多, 政府层面实践研究相对缺乏。大数据治理实践主要包括数据治理战略、方法, 大数据应用的人员、技术、流程, 大数据领域业务管理, 大数据价值案例, 大数据项目测度指标, 数据治理政策、标准和数据集等。

  三、政府大数据治理的成熟度研究

  (一)大数据治理成熟度研究述评

  当前, 大数据治理成熟度的研究多为信息治理、数据治理项目的一部分, 并非单独一个项目, 且企业和组织机构涉及较多, 政府层面较少, 研究零散分布在信息治理、数据治理、企业信息管理领域, 专门进行大数据成熟度研究的文章很少, 且均借鉴以上领域的研究成果。目前大数据治理成熟度模型主要从组织、技术、政策、管理等视角定义一系列大数据成熟度要素, 并制定不同成熟度等级, 如表2所示。

表2 大数据成熟度等级与要素

  (二)政府大数据治理成熟度评测指标体系构建

  1、政府大数据治理概述

  政府大数据是政府部门业务活动中产生积累的数据, 如人口数据、社保数据、交通数据、教育数据等, 目前存在诸多问题和挑战, 政策层面多涉及共享、开放与安全等问题, 缺乏覆盖数据资源全生命期关键信息活动和过程管理的法律法规, 尤其是缺乏大数据融合、共享和治理机制层面的法律法规和技术标准, 亟待大数据治理实现政府数据资源可持续管理, 支持政府信息公开和部门信息共享, 支撑政府治理创新和治理能力现代化。我国有30多个省市制定了大数据行动计划, 但对于目前政府大数据的认知能力、应用能力、发展路径和阶段目标均没有清晰界定, 建立政府大数据发展水平和治理评估体系就显得尤为迫切。

责任编辑:qinpeng