- 发布机构:高盛
- 发布日期:2017年9月
- 报告页数:45页
- 订购费用:免费
- 资料下载
报告简介
Uber 在人工智能领域正在做什么?
Uber 正在使用机器学习优化 UberX ETA 以及接送地点的准确性。为了实现这一点,需要数百万之前搭乘记录的数据点来探测常规交通模式,从而可以相应调整 ETA/接送地点。今年 9 月,Uber 展开了一个自动驾驶试点项目,地点位于匹兹堡,由来自 CMU 的研究人员(受雇于 Uber)负责该项目,很多大型汽车制造商业参与了进来。该公司还和沃尔沃达成了一项合作(金额 300 万美元),研发协作也为这个试点项目提供了机遇。不过,公司并不止步于小轿车。公司收购了一家自动卡车创业公司 Otto,今年十月在科罗拉多,公司试点快递了 5 万瓶啤酒。
为什么会做这样的事情呢?
Uber 的机器学习负责人 Danny Lange 在接受 GeekWire 的采访中提及,他们的团队正在将这种技术无缝供给公司的其他团队,这些团队无需具备机器学习背景就可以使用 APIs。这也能让公司不同部门能高效利用机器学习基础架构,例如,UberX、UberPool、UberEats 以及自动驾驶工具都使用到了公司的人工智能技术。
IBM 在人工智能领域正在做什么?
IBM 在全球有 3000 多名研究人员。过去十年,IBM 在认知计算上超过有 1400 项专利,下一代云上有 1200 项,在硅/纳米科学上有 7200 项专利。IBM Watson 利用自然语言处理机器学习技术识别模式,并提供在非结构数据上的洞见,据该公司表示这代表如今所有数据的 80%。其他 Watson 产品包括 Virtual Agent,一个响应分析的自动消费者服务体验;Explorer,这是一个分析并连接大量不同数据集的工具。
为什么会做这样的事情呢?
IBM 一直是该领域的先驱,有着极大的成就,包括上世纪 90 年代的 DeepBlue 和 2011年的 Watson。Watson 的应用包括医疗中的病人治疗分析,基于 twitter 数据的股票推荐,零售中消费者的行为分析,以及对抗网络安全威胁。据财富报道,GM 将 Watson 加入到了汽车中,在 OnStar 系统上结合了 Watson 的能力。